智库圆桌 (第45期·总95期)

推动煤炭清洁高效利用

2022年1月份,国务院印发《"十四五"节能减排综合工作方案》,提出实施煤炭清洁高效利用工程。6月份,国家发展改 革委等部门发布《煤炭清洁高效利用重点领域标杆水平和基准水平(2022年版)》的通知,指出对标实现碳达峰碳中和目标 任务,推动煤炭清洁高效利用,促进煤炭消费转型升级。本期邀请专家围绕相关问题进行研讨。

主持人

本报理论部主任、研究员 徐向梅

煤炭清洁高效利用内涵不断深化煤炭清洁高效利用特征,

型中的作用?

李维明(国务院发展研

究中心资源与环境政策研究 所资源政策研究室主任):煤 炭是我国的基础能源和重要 工业原料,是确保我国能源 安全的坚实基础。改革开放 以来,随着经济快速发展,燃 煤引起的环境问题日益突 出。为提高燃煤效率和治理 燃煤污染,20世纪90年代起, 我国开始重视煤炭清洁高效 利用,成立"国家洁净煤技术 推广规划领导小组",出台 《中国洁净煤技术"九五"计 划和2010年发展纲要》,对煤 炭清洁高效利用首次作出指 导和部署。党的十八大以 来,党中央高度重视煤炭清 洁高效利用,明确提出"四个 革命,一个合作"能源安全新 战略和深入打好污染防治攻 坚战,陆续颁布《大气污染防 治行动计划》《关于促进煤炭 安全绿色开发和清洁高效利 用的意见》《煤炭清洁高效利 用行动计划(2015—2020

年)》《能源技术革命创新行动计划(2016-2030年)》等一系列政策文件,煤炭清洁利用 正式上升为国家能源发展战略。此时煤炭清 洁高效利用指煤炭洗选、燃料发电、清洁转化、 分散燃烧等环节清洁和高效利用,关注效率提 升和传统污染物控制。

"十四五"时期,我国经济转向高质量发展 阶段,生态文明建设进入以降碳为重点战略方 向、推动减污降碳协同增效、促进经济社会发 展全面绿色转型、实现生态环境质量改善由量 变到质变的关键时期。煤炭清洁高效利用内 涵不断深化,除继续强调在利用各环节更加

> 高效、更加清洁,执行更加严格的污染排 放标准外,还要结合规模化利用和低 碳化、绿色化时代要求,更加注重 绿色、低碳和品质赋能,实现 全过程全要素清洁低碳

在煤炭利用各环节充分利用先进技术,做到煤 质与不同用煤技术、装备精准适配,实现利用或 转化效率大幅提高;高品质,即不断应用具有经 济、社会和环境效益的新技术、新工艺,升级、改 造、重塑煤炭利用产业,造就新业态,发展新产 品;高循环,即不断将煤炭利用过程产生的废弃 物变为可再利用材料,形成"资源一产品一资 源"的循环模式。"三低"体现为:低消耗,即煤炭 利用各环节要严格控制能源消费强度、水资源 消耗强度等,降低单位产品能源资源消耗;低污 染,即大气、水、固废污染物排放浓度要低,实现 清洁生产,达到近零排放;低碳排放,即要通过 与可再生能源深度耦合以及碳捕集利用与封存 技术提升减碳能力,降低碳排放量。

当前形势下,加快煤炭清洁高效利用是支 撑能源转型、确保国家能源安全和实现"双碳" 目标的必然选择和坚强基石。我国富煤贫油少 气的能源资源禀赋特点决定了煤炭的主体能源 地位短期内不会发生根本性变化。2021年,我 国煤炭消费超40亿吨,在一次能源消费中占比 仍高达56%,煤炭利用产生的碳排放约占化石能 源消费碳排放70%以上。如果不加快调整煤炭 当前的利用方式和消费结构,将加剧碳排放和 环境污染等问题。与此同时,实现能源转型并 非一日之功,美德日等发达国家发展历程表明, 即使有可替代煤炭的能源,碳达峰后仍会使用 煤炭,只是用途会发生改变。就我国而言更是 如此,实现"双碳"目标仍需大量清洁煤炭提供 过渡和兜底保障。一方面,风、光等可再生能源 装机规模将大幅增加,而可再生能源电力波动 性大,需要利用清洁燃煤发电的稳定性,为新能 源平抑波动提供基底。另一方面,煤炭作为原 料在现代煤化工(煤制烯烃、芳烃等)和煤基高 端材料(碳纤维、石墨烯、炭质还原剂、高端活 性炭等)生产方面仍有一定应用空间,并

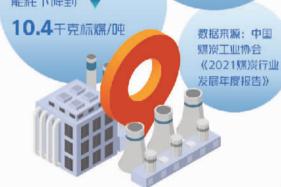
将逐步成为我国碳中和进程中煤炭的主 要利用方式之一。在此背景下,破解 煤炭"减"与"保"的两难问题,关键是 走资源节约和生态环境友好的发展 道路,推进煤炭清洁高效利用。如此 不仅有助于倒逼煤炭淘汰落后产能 和转型升级,体现"减"的责任,切实 落实国家碳减排目标;还有助于担当 能源转型过程的兜底保障使命,更好 履行"保"的职责,进而确保我国能源 安全和实现"双碳"目标。

主持人:近年我国煤电技术创新取得哪 些成效,对推动煤电行业减污降碳发挥了哪 些作用?

高虎(中国宏观经济研究院能源研究所研

究员):我国以煤为主的资源禀赋形成了煤电 为主体的电力生产和消费结构。作为我国的 基础性电源,煤电为支撑经济社会发展提供了 坚强电力保障,但煤电曾是导致大气污染问题 频发的重要来源。为推动煤电清洁高效发展, 减少煤炭消耗和污染物排放、改善空气质量, 《煤电节能减排升级与改造行动计划(2014— 2020年)》和《全面实施燃煤电厂超低排放和节 能改造工作方案》先后印发实施。经过多年努 力,我国煤电节能减排工作取得显著成效。

从清洁利用水平看,截至2021年底,我国 达到超低排放限值的煤电机组约10.3亿千 瓦,占全国煤电总装机容量93%。2021年,全 国电力烟尘、二氧化硫、氮氧化物排放量分别 约为12.3万吨、54.7万吨、86.2万吨,较2015 年分别下降69%、73%、52%。


从节能降碳水平看,2021年全国6000千 瓦及以上火电厂供电煤耗为301.5克标准 煤/千瓦时,较2015年下降13.5克标准煤/千瓦 时,相当于2021年全年减少电煤消费9500万 吨;全国单位火电发电量二氧化碳排放约828 克/千瓦时,较2015年下降22克/千瓦时。据 中国电力企业联合会统计,以2005年为基准 年,2006年至2021年通过供电煤耗降低减少

大型煤炭企业采煤机械化

程度98.95%

大型煤矿原煤生产综合

智能绿色成煤炭生产新趋势 能耗下降到

任世华(煤炭科学研究总院科技支持中心 主任):安全绿色高效开发是煤炭稳定供应的 基础,近年来取得跨越式发展。我国煤炭科技 创新由跟踪、模仿逐步升级到并跑、领跑,大型 矿井建设、特厚煤层综放开采、煤矿智能化开 采等技术已达到国际先进甚至领先水平,推动 了我国煤炭安全高效清洁开采。

主持人:我国在煤炭安全高效清洁生产方

面取得哪些成果?未来煤矿建设趋势如何?

煤矿安全根本性好转。我国煤炭资源普 遍埋藏较深,煤炭开采以井工煤矿为主。井下 环境复杂,灾害风险因素较多,煤矿安全生产 面临巨大挑战。煤炭安全生产水平通常用原 煤生产百万吨死亡率表示,即平均每生产100 万吨原煤因事故死亡的人数。该指标2000年 高达5.77,2010年仍为0.749。随着煤矿瓦斯、 冲击地压、水害、火灾等防治体系不断完善,先 进技术装备取得重大突破并大规模推广应用, 2021年我国原煤生产百万吨死亡率下降到 0.044, 较 2010 年下降 94.1%, 年均下降超 22%。一些现代化大型煤矿安全生产水平已 基本与发达国家同等开采条件煤矿持平。

生产效率大幅提高。煤炭生产效率也称 生产工效,即平均一个工作人员工作一天的煤 炭产量。技术进步推动我国煤矿机械化水平、 单井产量规模逐步提高,带动煤炭生产工效快 速提升。2021年,大型煤炭企业采煤机械化程 度提高到98.95%,煤矿单井产量规模提高到约 92万吨/年,大型煤炭企业原煤生产工效提高 到 8.79 吨/工, 较 2012 年 6.43 吨/工提高了 36.7%。一些现代化大型煤矿,如国家能源集 团神东煤炭补连塔煤矿,煤炭生产工效达到国 际同类条件煤矿领先水平。

清洁生产水平显著提升。随着煤矿机械化、 信息化、智能化水平持续提高,煤矿生产能耗逐

年降低,加上煤矿"电代煤""气代煤"等改造升 级,用能结构发生较大变化,煤炭生产用能逐年 降低。2021年,我国大型煤矿原煤生产综合能 耗、综合电耗分别下降到10.4千克标煤/吨、 20.7千瓦时/吨。同时,由于煤矿瓦斯抽采利用 率逐步提高,煤炭开发过程排放到空气中的甲烷 大幅度减少,煤炭开发过程温室气体排放呈下降 趋势。据测算,从2010年到2020年,平均生产 1吨煤炭的温室气体排放量由226.7千克下降到 151.1千克,10内年下降了三分之一。

技术进步、从业人员减少、生态环境保护 等因素,决定了煤炭开发不能延续高劳动强 度、高生态损害的传统方式,走智能绿色之路 是必然要求。近年来,在各级政府部门、煤炭 企业等高度重视和快速推进下,煤炭智能化、 绿色化开采取得初步成效。

在煤炭智能化开采方面,自2014年建成首 个智能化开采工作面以来,智能地质保障系统、 智能掘进系统、智能采煤系统、智能主运输系统 等10多个环节关键核心系统取得突破,形成智 能化煤矿一体化解决方案,探索出适合不同区 域、不同煤层条件的煤矿智能化建设模式。截 至2021年年底,400多处煤矿开展智能化建设, 建成813个智能化采掘工作面,一些煤矿实现 "有人巡视、无人操作"智能化开采。当前,煤矿 智能化逐步由试点示范转向大范围推广应用。

在煤炭绿色化开采方面,煤炭行业持续推 进绿色矿山建设。保水开采、充填开采等煤炭开 采与生态环境保护相融合的技术取得突破并实 现推广应用,有效降低煤炭开采对地下水的影 响,减少了煤矿区地表沉陷。2021年煤矿区土 地复垦率达57%,矿区生态环境质量稳定向好。 截至2021年年底,纳入全国绿色矿山名录的煤 炭企业共284家。一些煤矿实现了矿区生态环 境正效益,不仅没有破坏环境,而且优化了环境。

适应新时代发挥能源兜底保障作用的新

定位、碳达峰碳中和等新要求,我国煤炭行业 将呈现以下趋势。

一方面,智能柔性矿井将成为煤矿建设新 形式。"双碳"目标下,风、光等可再生能源发电 并网比例将逐步增高,电力调峰需求增加,加 大了煤炭需求波动。同时,油气对外依存度持 续攀升且地缘政治复杂多变,我国油气供应安 全面临严峻挑战,将进一步加大煤炭需求波 动。长期看,煤炭生产不是越多越好,而是需 要时可快速启动生产,不需要时可低成本保持 生产能力,实现柔性供应,产能可低成本宽负 荷调节的智能柔性矿井将替代当前高产高效 矿井成为未来煤矿建设新形式。

另一方面,煤矿区将发展成为碳封存基 地。煤矿区不仅有煤炭资源,还有充足的地下 空间和土地资源,具有巨大的储碳能力。有关 研究表明,500米深的煤矿地下空间储存二氧 化碳具有较好的稳定性。同时,煤矿地下空间 的残煤、岩层和地下水对二氧化碳有一定的吸 附、溶解和运移作用,经过长时间物理化学反 应和地质变迁,可生成碳酸盐矿,固化二氧化 碳。利用矿区土地,种植具有利用价值的快 速生长植物,可以形成碳汇。煤矿开采出 煤炭,地下空间将煤炭利用产生的二氧 化碳封存,地表植被形成碳汇,煤矿 区有潜力实现碳自循环。

技术创新促煤电节能减排

力部门碳减排贡献度达41%,有效减缓了电力 行业二氧化碳排放量增长。

煤电清洁高效利用的成就离不开煤电技 术创新发展。目前,我国已实现高参数、大容 量超超临界燃煤机组自主研发和制造,主要 参数达到世界先进水平,建成全球发电能效 最高、在建单机容量最大的燃煤机组,供电煤 耗最低降至260克/千瓦时以下;百万千瓦空 冷发电机组、二次再热技术、大型循环流化床 发电等技术均世界领先。2021年底,我国自 主研发建造的国内首座大型二氧化碳循环发 电试验机组完成72小时试运行,额定功率达 到5000千瓦,是世界容量最大的超临界二氧 化碳循环发电机组,为进一步提高火电机组 效率打下坚实基础。随着建设应用先进煤电 技术、关停淘汰落后煤电机组,我国煤电结构 不断优化,大容量、高参数、低排放的高效煤 电机组比重持续提升。当前,我国超临界和 超超临界先进煤电机组超过860台,在全国煤 电总装机中占比超过一半。

随着具有波动性特点的风电、光伏发电等 新能源大规模发展,电力供应不确定性大幅增 加,配置充足的灵活调节电源对于保障电力供 需平衡、维护电力系统安全稳定运行至关重 要。当前,我国抽水蓄能装机在电力系统中占 比只有1.5%,电化学等新型储能技术还在起步 阶段,要求煤电机组具有灵活的上下调节能 力,为新能源发展和新型电力系统建设保驾护 航。"十三五"以来,我国启动煤电灵活性改造 工作,推动煤电企业开展深度调峰、热电解耦 等多种技术路线探索,煤电机组最小发电出力 从50%至60%额定容量可降至30%到35%,部 分机组甚至可低至20%到25%,可调节范围大 大增加。2021年底,我国煤电灵活性改造规模 超过1亿千瓦,有效提高了电力系统灵活调节 能力,也更好促进了可再生能源发展。

我国能源资源禀赋决定了煤电在相当长 时间内仍将承担保障电力安全供应的重要作 用。2021年,全国煤电装机占比46.7%,发电 量占比约60%,发电用煤占全国煤炭总消费的 比重超过一半,尽管我国煤电行业在节能降 耗、碳减排等方面已取得显著成效,但煤电仍 是全国二氧化碳排放量最大的行业,亚临界 及以下机组还有4亿多千瓦,部分机组存在能 耗偏高、灵活调节能力不足等问题。

随着碳达峰碳中和工作持续推进、新型 电力系统逐步建立,煤电清洁、高效、灵活、低 碳转型步伐还需进一步加快。要大力推动煤 电节能降碳改造、灵活性改造、供热改造"三 改联动",明确煤电要加快由主体性电源向提 供可靠容量、调峰调频等辅助服务的基础保 障性和系统调节性电源转型。2021年10月, 国家发展改革委、国家能源局联合印发《全国 煤电机组改造升级实施方案》,明确提出"十 四五"期间,煤电节能降碳改造规模不低于 3.5亿千瓦、供热改造规模力争达到5000万千 瓦、灵活性改造完成2亿千瓦。按此规模测 算,预计可节约煤炭消费5000万吨以上,提升 新能源消纳能力5000万千瓦以上,更好地推 动煤炭和新能源优化组合。

多方发力突破制约

主持人:煤炭清洁高效利用还面临哪些 制约,下一步应如何发力?

秦容军(中国煤炭经济研究会副研究 员):尽管我国煤炭清洁高效利用发展取得显 著成效,但仍面临一些制约。

我国煤炭洗选技术和装备达到国际先进 水平,但原煤入选率仍需提高。煤炭洗选加 工能改善和稳定煤质,提高后续煤炭利用效 率,是煤炭清洁高效利用的前提和基础。我 国原煤入选率从2015年的66%提高到2021年 的71.7%,而澳大利亚、美国等发达国家原煤 入选率已达85%至90%。基于我国煤炭资源 条件,实现我国原煤应选尽选,原煤入选率要 达到90%左右。另外,还存在分选产品质量不 均衡、信息化应用差距明显、定制化水平不足 等问题,在精细化和智能化洗选加工方面任

我国煤炭的燃料发电技术水平世界领 先,但燃煤发电效率偏低、碳排放量大。煤炭 作为燃料发电是煤炭清洁高效利用的主要领 域,一方面,全国燃煤电厂供电煤耗由2015年 的 315 克标准煤/千瓦时降低到今年上半年 的299.8克标准煤/千瓦时,但目前最先进的燃 煤电厂供电煤耗已达到270克标准煤/千瓦 时,对标先进,我国供电煤耗仍有提升空间。 另一方面,我国火电厂发电效率普遍低于 50%,能源转化效率低导致供电煤耗偏高,也 增加了污染物排放。另外,二氧化碳排放量 高也是目前电厂存在的重要问题,而碳捕集 技术应用仍停留在示范阶段。

煤炭作为原料进行清洁转化,产业技术 有待进一步提升和优化。一方面煤化工能效 水平需要降低。目前煤化工行业先进与落后 产能并存,不同企业间的能效水平差异显著, 节能降碳改造升级潜力较大。参照《煤炭清 洁高效利用重点领域标杆水平和基准水平 (2022年版)》《高耗能行业重点领域能效标杆 水平和基准水平(2021年版)》,截至2020年年 底,煤制甲醇行业能效低于基准水平的产能 约占25%,煤制乙二醇行业能效低于基准水平 的产能约占40%,合成氨行业能效低于基准水 平的产能约占19%,焦化行业能效低于基准水 平的产能约占40%;另一方面,煤化工行业碳 排放强度需要进一步降低。煤制油、煤制烯 烃等煤化工项目具有工艺链长、碳排放强度 大、工艺碳排放浓度高的特点,煤转化过程的 碳排放强度是石油化工的3倍至8倍。

低阶煤分质利用和分散用煤等方面还存 在不足。在低阶煤分质利用方面,目前技术 尚不成熟,包括高温含尘热解气除尘技术未 突破易造成管道堵塞、焦油重质化且含尘量 高、装置大型化及粉焦综合利用困难等;在分

散用煤方面,分散用煤量由2015年的6亿吨减 少到2021年的2.6亿吨左右,但也存在民用型 煤质量不稳定和燃烧取暖效果不好、民用炉 具产品质量和性能较差、燃料和炉具不配套

切实推进煤炭清洁高效利用,建议从以 下几个方面发力。

一是强化法律保障作用。建议加快修订 煤炭法,进一步优化煤炭清洁高效利用的内 容,重点明确煤炭清洁高效利用的地位、主要 举措、政策支持等事项,同时强化程序性规 定,为相关工作开展提供充足的法律保障。

二是支持煤炭清洁高效利用新兴技术研 发和应用。加强对煤炭清洁高效利用重大关 键技术和装备研发统筹。强化基础研究和前 沿技术布局,支持开展具有前瞻性、先导性和 "卡脖子"的重大技术装备攻关。对面向国家 重大战略需求的煤炭清洁高效利用技术,研 究制定支持工业示范运转的专项政策。加大 煤炭作为原料的产业发展支持力度,促进煤 化工产业高端化、多元化、低碳化发展。

三是制定财税鼓励政策。制定促进煤炭 清洁高效利用的财政补贴、税费、贷款支持等 政策。列入煤炭清洁高效利用技术装备清单 的技术装备可享受有关税费减免、贷款支持 等政策优惠,简化地区规划的煤炭清洁高效 利用项目的核准手续。引导风险投资、私募 股权投资等支持,发挥政策性金融、开发性金 融和商业金融的优势,持续支持煤炭清洁高 效利用技术的研发和应用;支持具备保障国 家能源安全作用的技术储备和产能储备

四是鼓励煤化工转化与新能源耦合发 展。对照行业能效标杆和基准水平,对现有 化工项目开展节能降碳系统性改造和落后产 能淘汰,能效基准水平以下产能要基本清零, 拟建、在建项目要对照能效标杆水平建设实 施。鼓励"风光互补新能源一电解水制氢/储 能/电网一现代煤化工"一体化碳中和创新示 范模式,并给予一定政策扶持。对积极开拓 新技术新能源的企业应给予一定政策支持, 核减其综合能源消费量,鼓励企业参与新能 源技术开发。

五是加快分散用煤治理。优先选择工业 余热、热电联产、地热等方式替代煤炭分散燃 烧;推动燃煤工业锅炉向燃煤、废弃物、生物 质、半焦、天然气等多元燃料清洁高效燃烧技 术发展;加快提升节能环保炉具普及率,淘汰 低效落后产品,在清洁取暖不能覆盖的区域, 采取洁净型煤与专用炉具配套销售方式实现 清洁燃烧,鼓励生物质供暖、"太阳能+"、水源 热泵、"民用清洁炉具+太阳能+储热水箱"等 光储一体化民用供暖等。

本版编辑 裴 文 美 编 王子萱 来稿邮箱 jjrbjjzk@163.com